Q.P. C	ode:	16EE7502 R1	6			
Reg.	No.					
	SID	HARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR				
(AUTONOMOUS)						
IVI. I (ecn I	Year I Semester Regular & Supplementary Examinations February 2 DIGITAL CONTROL SYSTEMS	018			
		(Control Systems)				
Time: 3 hours Max. Ma						
		(Answer all Five Units 5 X 12 =60 Marks)				
		UNIT-I				
1	a.	Explain the block diagram of digital control system?	6M			
	b	Explain the effect of quantization error in digital control systems?	6M			
_		OR				
2	a.	Compare digital control system and analog control systems?	6M			
	b.	Explain the operation of sample and hold circuit in digital control systems.	6M			
3	a.	Find the z-transform of the following function $x(k)$				
0	u.	$x(k) = \sum k a^{k-1} k = 1, 2, 3, \dots$				
			6M			
	b.	Find the initial value and final value of the following functions				
		$X(z) = \frac{1}{z} \frac{z^{-1}(1 - z^{-10})}{z^{-1}(1 - z^{-10})}$				
		$ X(z) = \frac{1}{10} \frac{z^{-1}(1-z^{-10})}{(1-z^{-1})^2} $ and ii) $X(z) = \frac{2z^3+z}{(z-1)(z-1)^2} $	6M			
		OR	0111			
4	a.	Obtain the z-transform for the following (i) $f(t) = e^{-at} \cos wt$. (ii) unit-ramp				
		function.	6M			
	b.	Solve the following difference equation using z-transform method Where				
		x(0) = 0, x(1) = 2. $X(k+2)-x(k+1)+.25 x(k)=2u(k)$	6M			
		UNIT-III	0101			
5	а	Explain the advantages of design of Digital control systems based on				
		Frequency response method.	6M			
	b	Determine the stability for the system having characteristic equation				
		$P(z) = z^{4} - 1.2 z^{3} + 0.07 z^{2} + 0.3 z08 = 0$ OR	6M			
6	a.	Explain the mapping of s plane to z plane with one example.				
0	b.	sketch the root locus for unity feedback sampled data system having the	6M			
	D.	open loop transfer function:				
		$G(s) = \frac{(1 - e^{-Ts})}{s} \frac{K}{s(s+1)}$				
		$G(s) = \frac{1}{s} \frac{1}{s(s+1)}$				
		Find the value of K with critical gain stability for T=4?	6M			

UNIT-IV

7 Explain state space representation of Discrete time systems &Determine discrete state variable representations controllable ,observable and diagonal canonical form for the transfer function. $X(z) = \frac{z+1}{z^2 + 1.3 z + .4}$ 12M

OR

8 Explain the design of PID Controllers with its advantages over P & PI controllers.

9	а.	Explain Liapunov stability analysis.	6M	
	b.	Determine the stability of the equilibrium state of the following system		
		$\mathbf{x}_{1}(\mathbf{k}+1) = \mathbf{x}_{2}(\mathbf{k})$		
		$x_2(k+1) = -0.5 x_1(k) - x_2(k)$	6M	
OR				
10		Explain the design of Controller using pole placement method.	12M	

*** END ***

 $x_1(k + 1) = x_1(k) - 1.2 x_2(k)$ $x_2(k + 1) = 0.5 x_1(k)$ 12M